3 A Diagonalization Algorithm
ثبت نشده
چکیده
منابع مشابه
Least Square Joint Diagonalization of Matrices under an Intrinsic Scale Constraint
We present a new algorithm for approximate joint diagonalization of several symmetric matrices. While it is based on the classical least squares criterion, a novel intrinsic scale constraint leads to a simple and easily parallelizable algorithm, called LSDIC (Least squares Diagonalization under an Intrinsic Constraint). Numerical simulations show that the algorithm behaves well as compared to o...
متن کاملNon-orthogonal tensor diagonalization
Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonal...
متن کاملOn Computation of Approximate Joint Block-Diagonalization Using Ordinary AJD
Approximate joint block diagonalization (AJBD) of a set of matrices has applications in blind source separation, e.g., when the signal mixtures contain mutually independent subspaces of dimension higher than one. The main message of this paper is that certain ordinary approximate joint diagonalization (AJD) methods (which were originally derived for degenerate" subspaces of dimension 1) can als...
متن کاملA Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals
In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...
متن کاملSome Gradient Based Joint Diagonalization Methods for ICA
We present a set of gradient based orthogonal and nonorthogonal matrix joint diagonalization algorithms. Our approach is to use the geometry of matrix Lie groups to develop continuous-time flows for joint diagonalization and derive their discretized versions. We employ the developed methods to construct a class of Independent Component Analysis (ICA) algorithms based on non-orthogonal joint dia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005